Fostering Collaborative Tools for Science

Advancing the Global Human Cell Atlas Effort


At CZI and in our single-cell biology work, we believe it’s important to learn from the community. Over the years, we’ve heard from grantees by hosting workshops convening leaders in the field to talk about major challenges facing the scientific community, as well as connecting scientists to one another to iterate and learn from each other’s work.

Based on those learnings, our Pilot Projects RFA and Collaborative Computational Tools RFA awarded 123 grants to develop collaborative technology, tools, and data to support the global Human Cell Atlas — a shared, open reference atlas of all cells in the healthy human body for scientific studies of health and disease. These foundational single-cell tools, benchmark datasets, algorithms, and visualizations facilitated cooperation and helped researchers share results faster. Read more about how our grantees support the Human Cell Atlas.

Steve Henikoff, Fred Hutchinson Cancer Research Center

Steve’s lab focuses on chromatin dynamics. As a member of the Division of Basic Sciences at Fred Hutchinson, his project’s goal is to automate CUT&RUN, a novel high-resolution technology for profiling specific components of the chromatin landscape, and apply it to standard human cell lines and selected blood cell lineages. The tool his lab develops can be applied to all tissues and cells throughout the eukaryotic kingdom.

Steve’s lab adapted their CUT&RUN technology for high-throughput via automation, as described in a publicly available protocol. The high specificity and low background of CUT&RUN allows for high resolution mapping, and its robustness and low cost make it ideal for clinical application.

Steve Henikoff’s CUT&Tag@home setup. Photo provided by Steve Henikoff.

He has also worked to introduce a novel chromatin profiling technology, CUT&Tag, and demonstrate its single-cell application. When Covid-19 closed Steve’s lab in March, he fashioned a makeshift laboratory in his laundry room at home using a 10-year-old PCR machine and a microcentrifuge. This “remote” setup allowed him and his team to post a Cut&Tag@home protocol on April 17.

Nick Navin, The University of Texas MD Anderson Cancer Center



Chan Zuckerberg Initiative Science

Supporting the science and technology that will make it possible to cure, prevent, or manage all diseases by the end of the century.